ALL SAINTS C of E PRIMARY SCHOOL AND NURSERY
PARSONAGE LANE, BISHOP'S STORTFORD, CM23 5BE

Headteacher: Miss H.Otranen
Fax: 01279466457

Tel: 01279836006

## MATHS CALCULATION POLICY

## Addition-

Key language which should be used: sum, total, parts and wholes, plus, add, altogether, more than, 'is equal to' 'is the same as'

| Concrete | Pictorial | Abstract |
| :---: | :---: | :---: |
| Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears etc) |  | $4+3=7$ (four is a part, 3 is a part and the whole is seven) |
| Counting on using number lines by using cubes or Numicon $\begin{aligned} & \text { elvelvos } \\ & 1111 \text { mp } 1141 \end{aligned}$ | A bar model which encourages the children to count on <br> ? | The abstract number line: What is 2 more than 4? What is the sum of 4 and 4 ? What's the total of 4 and 2? $4+2$ |
| Regrouping to make 10 by using ten frames and counters/cubes or using Numicon: $6+5$ | Children to draw the ten frame and counters/cubes | Children to develop an understanding of equality e.g. $6+\square=11$ and $6+5=5+\square \quad 6+5=\square+4$ |


| TO + O using base 10. Continue to develop understanding of partitioning and place value $41+8$ | Children to represent the concrete using a particular symbol e.g. lines for tens and dot/crosses for ones. | $41+8$ $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$ |
| :---: | :---: | :---: |
| TO + TO using base 10. Continue to develop understanding of partitioning and place value and use this to support addition. Begin with no exchanging. $36+25$ | This could be done one of two ways: <br> T <br> o | Looking for ways to make 10$\begin{array}{ll} 36+25= & 30+20=50 \\ & 5+5=10 \\ 50+10+1=61 \\ 5 \end{array}$ |
| Tens Ones  <br>    |  |  |
|  |  | Expanded Method $\quad$ Formal method: 36 |
| $=$  <br>   | Tens Ones <br>   |  |




If the children are completing a word problem, draw a bar model to represent what it's asking them to do


## 243

$+368$
611
11

## Decimal Addition

$$
10.3
$$

$$
\begin{array}{r}
+9.52 \\
\hline
\end{array}
$$

Fluency variation, different ways to ask children to solve 21+34:


Sam saved $£ 21$ one week and £34 another. How much did he21
save in total?

21+34=55. Prove it! (reasoning but the children need to be fluent in representing this)
$+34$
$21+34=$
$\square$ $=21+34$

What's the sum of twenty one and thirty four?


Always use missing digit problems too:


## Subtraction-

Key language which should be used: take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'




## Multiplication-

Key language which should be used: double times, multiplied by, the product of, groups of, lots of, 'is equal to' 'is the same as'

| Concrete | Pictorial | Abstract |
| :---: | :---: | :---: |
| Repeated grouping/repeated addition (does not have to be restricted to cubes) $3 \times 4$ or 3 lots of 4 | Children to represent the practical resources in a picture e.g. $\begin{array}{lll} x X & x X & x X \\ x X & x X & x X \end{array}$ <br> Use of a bar model for a more structured method | $\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$ |
| Use number lines to show repeated groups- $3 \times 4$ | Represent this pictorially alongside a number line e.g: | Abstract number line $3 \times 4=12$ |
| Use arrays to illustrate commutativity (counters and other objects can also be used) $2 \times 5=5 \times 2$ | Children to draw the arrays | Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 5+5=10 \end{aligned}$ |




Fluency variation, different ways to ask children to solve $6 \times 23$ :

| 23 | 23 | 23 | 23 | 23 | 23 | Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week? | Find the product of 6 and 23 |  | What's the calculation? What's the |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | (1) - | $\bigcirc$ |
| ? |  |  |  |  |  |  | $6 \times 23=$ |  | (1)(1) | $\bigcirc$ |
|  |  |  |  |  |  | (1) |  |  | Q |
|  |  |  |  |  |  |  | Tom saved 23p three days a week. How much did he save in 2 weeks? | $=6 \times 23$ |  | (1) 10 | 008 |
| With the counters, prove that 6 $x 23=138$ |  |  |  |  |  | (1) ${ }^{(1)}$ |  |  |  | 00 |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | $\times \underline{23}$ |  |  | (1) | $Q 0$ |

## Division-

Key language which should be used: share, group, divide, divided by, half, 'is equal to' is the same as'

| Concrete | Pictorial | Abstract |
| :---: | :---: | :---: |
| 6 shared between 2 (other concrete objects can also be used e.g. children and hoops, teddy bears, cakes and plates) | This can also be done in a bar so all 4 operations have a similar structure: | $6 \div 2=3$ <br> What's the calculation? |
| Understand division as repeated grouping and subtracting $6 \div 2$ |  | Abstract number line |
| 2d $\div 1 \mathrm{~d}$ with remainders $13 \div 4-3$ remainder 1 | Children to have chance to represent the resources they use in a pictorial way e.g. see below: | $13 \div 4-3$ remainder 1 <br> Children to count their times tables facts in their heads |




Long division


|  |  | grouped and the 0 is what I <br> have left. |
| :--- | :--- | :--- |

